Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
Sci Rep ; 14(1): 10546, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719979

Radioiodine refractory (RAIR) patients do not benefit from iodine-131 therapy. Thus, timely identification of RAIR patients is critical for avoiding ineffective radioactive iodine therapy. In addition, determining the causes of iodine resistance will facilitate the development of novel treatment strategies. This study was comprised of 20 RAIR and 14 non-radioiodine refractory (non-RAIR) thyroid cancer patients. Liquid chromatography-mass spectrometry was used to identify differences in the serum metabolites of RAIR and non-RAIR patients. In addition, chemical assays were performed to determine the effects of the differential metabolites on iodine uptake. Metabolic pathway enrichment analysis of the differential metabolites revealed significant differences in the phenylalanine and tyrosine metabolic pathways. Notably, quinate and shikimic acid, metabolites of the tyrosine pathway, were significantly increased in the RAIR group. In contrast, the phenylalanine pathway metabolites, hippuric acid and 2-phenylacetamide, were markedly decreased in the RAIR group. Thyroid peroxidase plays an important role in catalyzing the iodination of tyrosine residues, while the ionic state of iodine promotes the iodination reaction. Quinate, shikimic acid, hippuric acid, and 2-phenylacetamide were found to be involved in the iodination of tyrosine, which is a key step in thyroid hormone synthesis. Specifically, quinate and shikimic acid were found to inhibit iodination, while hippuric acid and 2-phenylacetamide promoted iodination. Abnormalities in phenylalanine and tyrosine metabolic pathways are closely associated with iodine resistance. Tyrosine is required for thyroid hormone synthesis and could be a potential cause of iodine resistance.


Iodine Radioisotopes , Metabolomics , Thyroid Neoplasms , Humans , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/radiotherapy , Female , Male , Middle Aged , Metabolomics/methods , Adult , Iodine/metabolism , Metabolic Networks and Pathways/drug effects , Aged , Metabolome
2.
Eur J Med Chem ; 270: 116387, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38593589

Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.


Aniline Compounds , Ferroptosis , Naphthoquinones , Neoplasms , Thiophenes , Humans , Naphthoquinones/pharmacology , Apoptosis
3.
RSC Med Chem ; 15(2): 506-518, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38389882

The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently by many chemotherapeutic agents. A proposed strategy to overcome MDR is to disable the efflux function of P-glycoprotein (P-gp/ABCB1), a critical member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. In this study, structural modification of a third-generation P-gp inhibitor WK-X-34 based on bioisosteric and fragment-growing strategies led to the discovery of the adamantane derivative PID-9, which exhibited the best MDR reversal activity (IC50 = 0.1338 µM, RF = 78.6) in this series, exceeding those of the reported P-gp inhibitors verapamil and WK-X-34. In addition, compared with WK-X-34, PID-9 showed decreased toxicity to cells. Furthermore, the mechanism studies revealed that the reversal activity of adamantane derivatives PID-5, PID-7, and PID-9 stemmed from the inhibition of P-gp efflux. These results indicated that compound PID-9 is the most effective P-gp inhibitor among them with low toxicity and high MDR reversal activity, which provided a fundamental structural reference for further discovery of novel, effective, and non-toxic P-gp inhibitors.

4.
PeerJ ; 11: e16291, 2023.
Article En | MEDLINE | ID: mdl-37927794

Background: Pancreatic cancer is a highly aggressive and lethal disease with limited treatment options. In this study, we investigated the potential therapeutic effects of compound KL-6 on pancreatic cancer cells. Methods: The study involved assessing the inhibitory effects of KL-6 on cell proliferation, clonogenic potential, cell cycle progression, apoptosis, migration, and invasion. Additionally, we examined the action mechanism of KL-6 by RNA-seq and bioinformatic analysis and validated by qRT-PCR and western blot in pancreatic cancer cells. Results: Our results demonstrated that KL-6 effectively inhibited the growth of pancreatic cancer cells in a dose-dependent manner. It induced G2/M phase cell cycle arrest and apoptosis, disrupting the cell cycle progression and promoting cell death. KL-6 also exhibited inhibitory effects on cell migration and invasion, suggesting its potential to suppress the metastatic properties of pancreatic cancer cells. Furthermore, KL-6 modulated the expression of genes involved in various cancer-related pathways including apoptosis and ferroptosis. Conclusion: These findings collectively support the potential of KL-6 as a promising therapeutic option for pancreatic cancer treatment. Further research is needed to fully understand the underlying mechanisms and evaluate the clinical efficacy of KL-6 in pancreatic cancer patients.


Ferroptosis , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Apoptosis , Pancreas/metabolism , Pancreatic Neoplasms
5.
Pharmacol Ther ; 249: 108488, 2023 09.
Article En | MEDLINE | ID: mdl-37442207

The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently in many chemotherapeutic agents. The overexpression of the ATP-binding cassette (ABC) transporters is involved in MDR. P-glycoprotein (P-gp)/ABCB1 is a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. Therefore, targeting P-gp with small molecule inhibitors is an effective therapeutic strategy to overcome MDR. Over the past four decades, diverse compounds with P-gp inhibitory activity have been identified to sensitize drug-resistant cells, but none of them has been proven clinically useful to date. Research efforts continue to discover an effective approach for circumventing MDR. This review has provided an overview of the most recent advances (last three years) in various strategies for circumventing MDR mediated by P-gp. It may be helpful for the scientists working in the field of drug discovery to further synthesize and discover new chemical entities/therapeutic modalities with less toxicity and more efficacies to overcome MDR in cancer chemotherapy.


Antineoplastic Agents , Neoplasms , Humans , Drug Resistance, Neoplasm , Drug Resistance, Multiple , ATP Binding Cassette Transporter, Subfamily B , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , ATP-Binding Cassette Transporters , ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/therapeutic use
6.
Bioorg Med Chem ; 90: 117352, 2023 07 15.
Article En | MEDLINE | ID: mdl-37257255

Ferroptosis is a new type of regulated, non-apoptotic cell death driven by iron-dependent phospholipid peroxidation. Inducing cell ferroptosis by inactivating glutathione peroxidase 4 (GPX4) has been considered as an effective cancer treatment strategy, but only few GPX4 inhibitors have been reported to date. Targeted protein degradation is receiving increasing attention in the discovery and development of therapeutic modality, particularly proteolysis targeting chimeras (PROTACs). Herein, we reported the design, synthesis, and evaluation of different types of GPX4-targeting PROTACs using ML162 derivatives and ligands for CRBN/VHL E3 ligases. Among them, CRBN-based PROTAC GDC-11 showed a relatively balanced biological profile in GPX4 degradation (degradation rate of 33% at 10 µM), cytotoxicity (IC50 = 11.69 µM), and lipid peroxides accumulation (2-foldincreaserelatedtoDMSO), suggesting a typical characteristic of ferroptosis. In silico docking and quantum chemistry theoretical calculations provided a plausible explanation for the moderate degrading effect of these synthesized PROTACs. Overall, this work lays the foundation for subsequent studies of GPX4-targeting PROTACs, and further design and synthesis of GPX4-targeting degrader are currently in progress in our group, which will be reported in due course.


Iron , Lipid Peroxides , Proteolysis , Phospholipid Hydroperoxide Glutathione Peroxidase , Peroxides , Proteolysis Targeting Chimera
7.
Front Pharmacol ; 14: 1138658, 2023.
Article En | MEDLINE | ID: mdl-36950011

Platycodin D (PD) is a triterpene saponin extracted from the root of Platycodon grandiflorum. It has been reported to exhibit multiple pharmacological and biological properties. There is substantial evidence to support that PD displays a wide range of anti-tumor activities. However, the detailed molecular mechanism still needs further elaboration. In the present study, to explore whether PD inhibits gastric cancer (GC) cell viability, eight GC cell lines and the GES-1 cell line (a gastric mucosal cell line) were tested. We found that PD exhibited better inhibitory activity on GC cell lines than on the non-tumor cell line. Besides, treatment with PD led to a significant cell cycle arrest, thereby causing subsequent apoptosis. Regarding the cell growth inhibition mechanism, PD can downregulate the protein level of c-Myc rather than its mRNA level in a dose-dependent manner. Further studies revealed that PD disturbed the overall ubiquitination level in GC cell lines and enhanced the ubiquitination-dependent degradation of c-Myc. Interestingly, the inhibition of cell viability by PD could be restored to a certain extent when the expression of c-Myc was recovered, suggesting that PD-mediated GC cell growth inhibition is closely associated with c-Myc expression. Our study proposes a novel molecular mechanism for PD inhibiting GC cell proliferation and growth by destabilizing the c-Myc protein. This work may lay a preliminary foundation for developing PD as an anti-cancer therapy.

8.
Front Pharmacol ; 14: 1143427, 2023.
Article En | MEDLINE | ID: mdl-36937887

Gastric cancer (GC) is a prevalent malignant neoplasm that poses a serious threat to human health. Overexpression of Aurora A (AURKA) is frequently associated with the self-renewal and tumorigenicity of various cancers. Chebulagic acid (CA) has been examined as a potential tumor suppressor based on its ability against numerous tumor biological activities. However, the possible mechanisms of CA inhibition of the progression of GC by mediating the AURKA/ß-catenin/Wnt signaling pathway have not been investigated. The present study investigated the level of AURKA expression in GC. We further examined the effect of CA on cell proliferation, migration, and apoptosis in the MKN1 and NUGC3 GC cell lines, and its efficacy in suppressing tumor growth was assessed in tumor bearing mice model. We demonstrated that AURKA was highly expressed in GC and associated with poor prognosis. We demonstrated that treatment with CA significantly inhibited the proliferation and migration of GC cells and induced apoptosis. Compared to the vehicle group, CA treatment severely diminished the volume and weight and the metastasis of tumors. CA also inhibited the expression of AURKA and the AURKA/ß-catenin/Wnt signaling pathway in vitro and in vivo. Collectively, the present results demonstrated that high expression of AURKA may be an independent factor of poor prognosis in patients with GC, and CA significantly suppressed the tumor biological functions of GC and inhibited the AURKA/ß-catenin/Wnt pathway.

9.
Int J Biol Sci ; 19(4): 1063-1079, 2023.
Article En | MEDLINE | ID: mdl-36923926

Gastric cancer (GC) is one of the most common malignant tumors in the world. GPx4, as the core regulator of ferroptosis, has become a potential molecular target for developing anticancer agents. In the present study, we found that GPx4 was overexpressed and negatively correlated with poor prognosis in GC, while it was associated with the GC development. Molecular docking and structure-based virtual screening assays were used to screen potential GPx4 inhibitors, and we identified a novel GPx4 inhibitor, polyphyllin B (PB), which can induce ferroptosis by down-regulating GPx4 expression in GC cells. It has also been shown to inhibit cell proliferation, suppress invasion and migration, induce apoptosis, and block the cell cycle progression in GC cells in vitro. Then, immunofluorescence and western blotting assay confirmed that PB can regulate the expression of LC3B, TFR1, NOCA4 and FTH1 in vitro, which suggested that suggest that PB may increase the level of Fe2+ by transporting Fe3+ into the cell by TFR1 and promoting NCOA4-dependent iron autophagy. In addition, PB can also suppresses tumor growth in an orthotopic mouse model of GC via regulating the expression of GPx4, TFR1, NOCA4 and FTH1 in vivo. In summary, we confirmed that GPx4 may be a potential target for GC treatment, PB may be a novel and promising drug for the treatment of GC, which shows good antitumor efficacy without causing significant host toxicity via inducing ferroptosis in both gastric cancer cells and mouse models.


Ferroptosis , Stomach Neoplasms , Animals , Mice , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Ferroptosis/genetics , Molecular Docking Simulation , Apoptosis/genetics , Cell Proliferation/genetics , Disease Models, Animal
10.
Nat Commun ; 14(1): 778, 2023 02 11.
Article En | MEDLINE | ID: mdl-36774361

The incidence of adenocarcinoma of the esophagogastric junction (AEG) has been rapidly increasing in recent decades, but its molecular alterations and subtypes are still obscure. Here, we conduct proteomics and phosphoproteomics profiling of 103 AEG tumors with paired normal adjacent tissues (NATs), whole exome sequencing of 94 tumor-NAT pairs, and RNA sequencing in 83 tumor-NAT pairs. Our analysis reveals an extensively altered proteome and 252 potential druggable proteins in AEG tumors. We identify three proteomic subtypes with significant clinical and molecular differences. The S-II subtype signature protein, FBXO44, is demonstrated to promote tumor progression and metastasis in vitro and in vivo. Our comparative analyses reveal distinct genomic features in AEG subtypes. We find a specific decrease of fibroblasts in the S-III subtype. Further phosphoproteomic comparisons reveal different kinase-phosphosubstrate regulatory networks among AEG subtypes. Our proteogenomics dataset provides valuable resources for understanding molecular mechanisms and developing precision treatment strategies of AEG.


Adenocarcinoma , Esophageal Neoplasms , F-Box Proteins , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Proteomics , Adenocarcinoma/pathology , Esophagogastric Junction/metabolism , Lymphatic Metastasis/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology
11.
Pharmacol Res ; 189: 106703, 2023 03.
Article En | MEDLINE | ID: mdl-36804016

Gastric cancer remains one of the most common deadly diseases and lacks effective targeted therapies. In the present study, we confirmed that the signal transducer and activator of transcription 3 (STAT3) is highly expressed and associated with a poor prognosis in gastric cancer. We further identified a novel natural product inhibitor of STAT3, termed XYA-2, which interacts specifically with the SH2 domain of STAT3 (Kd= 3.29 µM) and inhibits IL-6-induced STAT3 phosphorylation at Tyr705 and nuclear translocation. XYA-2 inhibited the viability of seven human gastric cancer cell lines with 72-h IC50 values ranging from 0.5 to 0.7 µΜ. XYA-2 at 1 µΜ inhibited the colony formation and migration ability of MGC803 (72.6% and 67.6%, respectively) and MKN28 (78.5% and 96.6%, respectively) cells. In the in vivo studies, intraperitoneal administration of XYA-2 (10 mg/kg/day, 7 days/week) significantly suppressed 59.8% and 88.8% tumor growth in the MKN28-derived xenograft mouse model and MGC803-derived orthotopic mouse model, respectively. Similar results were obtained in a patient-derived xenograft (PDX) mouse model. Moreover, XYA-2 treatment extended the survival of mice bearing PDX tumors. The molecular mechanism studies based on transcriptomics and proteomics analyses indicated that XYA-2 might exert its anticancer activity by synergistically inhibiting the expression of MYC and SLC39A10, two downstream genes of STAT3 in vitro and in vivo. Together, these findings suggested that XYA-2 may be a potent STAT3 inhibitor for treating gastric cancer, and dual inhibition of MYC and SLC39A10 may be an effective therapeutic strategy for STAT3-activated cancer.


Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/pathology , Cell Line, Tumor , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays , Phosphorylation , Cell Proliferation , Apoptosis
12.
Bioorg Med Chem ; 71: 116941, 2022 10 01.
Article En | MEDLINE | ID: mdl-35944386

Signal transducer and activator of transcription 3 (STAT3) is a key regulator of many human cancers and has been widely recognized as a promising target for cancer therapy. A variety of small-molecule inhibitors have been developed for targeting STAT3, and some of them are now undergoing clinical trials. S3I-201, a known STAT3 inhibitor, may block STAT3 function in cancer cells by binding to the STAT3 SH2 domain to disrupt STAT3 protein complex formation. Using S3I-201 as a starting point for drug development, we synthesized a series of new STAT3 inhibitors 9a-x in this study by introducing naphthoquinone unit, a privileged fragment in STAT3 inhibitors. Most of the compounds exhibited strong anti-proliferation activity of gastric cancer cells (MGC803, MKN28, MNK1, and AGS). The representative compound 9n (SIL-14) could effectively inhibit the colony formation and migration of gastric cancer cells MGC803, arrest the cell cycle and induce MGC803 cell apoptosis at low micromolar concentrations in vitro. In addition, SIL-14 can also inhibit the phosphorylation of STAT3 protein and significantly decrease the expression of total STAT3, suggesting that it may exert anticancer effects by blocking the STAT3 signaling pathway. These results support that SIL-14 may be a promising STAT3 inhibitor for the further development of potential anti-gastric cancer candidates.


Naphthoquinones , Stomach Neoplasms , Aminosalicylic Acids/pharmacology , Aminosalicylic Acids/therapeutic use , Benzenesulfonates , Cell Line, Tumor , Cell Proliferation , Humans , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism
13.
Front Pharmacol ; 13: 944455, 2022.
Article En | MEDLINE | ID: mdl-36034876

Gastric cancer is a common malignant tumor that threatens human health, and its occurrence and development mechanism is a complex process involving multiple genes and multiple signals. Signal transducer and activator of transcription 3 (STAT3) has been elucidated as a promising target for developing anticancer drugs in gastric cancer. However, there is no FDA-approved STAT3 inhibitor yet. Herein, we report the design and synthesis of a class of STAT3 degraders based on proteolysis-targeting chimeras (PROTACs). We first synthesized an analog of the STAT3 inhibitor S3I-201 as a ligand, using the cereblon (CRBN)/cullin 4A E3 ligase ligand pomalidomide to synthesize a series of PROTACs. Among them, the SDL-1 achieves the degradation of STAT3 protein in vitro, and exhibits good anti-gastric cancer cell proliferation activity, inhibits invasion and metastasis of MKN1 cell, and induces MKN1 cell apoptosis and arrests cell cycle at the same time. Our study shows that SDL-1 is a potent STAT3 degrader and may serve as a potential anti-gastric cancer drug, providing ideas for further development of drugs for clinical use.

14.
J Enzyme Inhib Med Chem ; 37(1): 2004-2016, 2022 Dec.
Article En | MEDLINE | ID: mdl-35844184

Gastric cancer remains a significant health burden worldwide. In continuation of our previous study and development of effective small molecules against gastric cancer, a series of benzochalcone analogues involving heterocyclic molecules were synthesised and biologically evaluated in vitro and in vivo. Among them, the quinolin-6-yl substituted derivative KL-6 inhibited the growth of gastric cancer cells (HGC27, MKN28, AZ521, AGS, and MKN1) with a submicromolar to micromolar range of IC50, being the most potent one in this series. Additionally, KL-6 significantly inhibited the colony formation, migration and invasion, and effectively induced apoptosis of MKN1 cells in a concentration-dependent manner. The mechanistic study revealed that KL-6 could concentration-dependently suppress STAT3 phosphorylation, which may partly contribute to its anticancer activity. Furthermore, in vivo antitumour study on the MKN1 orthotopic tumour model showed that KL-6 effectively inhibited tumour growth (TGI of 78%) and metastasis without obvious toxicity. Collectively, compound KL-6 may support the further development of candidates for gastric cancer treatment.


Chalcones , STAT3 Transcription Factor , Stomach Neoplasms , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcones/pharmacology , Humans , Molecular Targeted Therapy , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Stomach Neoplasms/drug therapy
15.
Chembiochem ; 23(14): e202200268, 2022 07 19.
Article En | MEDLINE | ID: mdl-35567365

Cytochrome P450 (CYP) 1B1 has been found to be overexpressed specifically in tumor tissues at an early stage, which makes it a potential cancer biomarker for molecular imaging. Multimodal imaging combines different imaging modalities and offers more comprehensive information. Thus, imaging probes bearing more than one kind of signal fragment have been extensively explored and display great promise. Herein, we developed a near infrared (NIR) probe with a chelator moiety targeting CYP1B1 by conjugating α-naphthoflavone (ANF) derivatives with both an NIR dye and a chelator for potential application in bimodal imaging. Enzymatic inhibitory studies demonstrated inhibitory activity against CYP1B1 and selectivity among CYP1 were successfully retained after chemical modification. Cell-based saturation studies indicated nanomolar range binding affinity between the probe and CYP1B1 overexpressed cancer cells. In vitro competitive binding assays monitored by confocal microscopy revealed that the probe could specifically accumulate in tumor cells. In vivo and ex vivo imaging studies demonstrated that the probe could effectively light-up the tumor tissues as early as 2 hours post-injection. In addition, the fluorescence was significantly blocked by co-injection of CYP1B1 inhibitor, which indicated the probe accumulation in tumor sites was due to specific binding to CYP1B1.


Chelating Agents , Optical Imaging
16.
Curr Med Chem ; 29(25): 4391-4409, 2022.
Article En | MEDLINE | ID: mdl-35152859

Bromodomain and extra-terminal domain (BET) proteins are a well-studied family of proteins associated with a variety of diseases, including malignancy and chronic inflammation. Currently, numerous pan BET inhibitors have exhibited potent efficacy in several in vivo preclinical models and entered clinical trials but have largely stalled due to their adverse events. Therefore, the development of new selective inhibitors and PROTACs (Proteolysis Targeting Chimeras) targeting BET is urgently needed. In the present review, we summarize the BET protein structure and the recent development in BET inhibitors, focusing mainly on BRD4-selective inhibitors and PROTAC degraders.


Neoplasms , Nuclear Proteins , Cell Cycle Proteins/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Nuclear Proteins/metabolism , Protein Domains , Proteolysis , Transcription Factors/metabolism
17.
Anticancer Agents Med Chem ; 22(2): 261-269, 2022.
Article En | MEDLINE | ID: mdl-33820523

BACKGROUND: Cytochrome P450 1B1 (CYP1B1) is specifically expressed in a variety of tumors which makes it a promising imaging target of tumor. OBJECTIVE: We aimed to design and synthesize CYP1B1 targeted chelators for the potential application in positron emission tomography (PET) imaging of tumor. METHODS: 1,4,7-triazacyclononane-1,4-diiacetic acid (NODA) was connected to the CYP1B1 selective inhibitor we developed before through polyethylene glycol (PEG) linkers with different lengths. The inhibitory activities of chelators 6a-c against CYP1 family were evaluated by 7-ethoxyresorufin o-deethylation (EROD) assay. The manual docking between the chelators and the CYP1B1 was conducted subsequently. To determine the binding affinities of 6a-c to CYP1B1 in cells, we further performed a competition study at the cellular level. RESULTS: Among three chelators, 6a with the shortest linker showed the best inhibitory activity against CYP1B1. In the following molecular simulation study, protein-inhibitor complex of 6a showed the nearest F-heme distance which is consistent with the results of enzymatic assay. Finally, the cell based competitive assay proved the binding affinity of 6a-c to CYP1B1 enzyme. CONCLUSION: We designed and synthesized a series of chelators which can bind to CYP1B1 enzyme in cancer cells.To our knowledge, this work is the first attempt to construct CYP1B1 targeted chelators for radiolabeling and we hope it will prompt the application of CYP1B1 imaging in tumor detection.


Chelating Agents/pharmacology , Cytochrome P-450 CYP1B1/antagonists & inhibitors , Drug Design , Heterocyclic Compounds/pharmacology , Binding Sites/drug effects , Cell Line, Tumor , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Cytochrome P-450 CYP1B1/metabolism , Dose-Response Relationship, Drug , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
18.
Expert Opin Ther Pat ; 32(12): 1185-1205, 2022 Dec.
Article En | MEDLINE | ID: mdl-36594709

Protein arginine methyltransferases (PRMTs), enzymes catalyzing the methylation of target proteins, play an essential role in maintaining functional homeostasis in normal physiology. Aberrant expressions and enhanced enzymatic activities of PRMTs have been closely associated with pathological states such as cancer, inflammatory, immune, metabolic, and neurodegenerative diseases. Therefore, the development of inhibitors targeting PRMTs has attracted a great deal of attention in both pharmaceutical industries and academic community. This review focuses on the small-molecule inhibitors targeting PRMTs in cancer therapy in the patents published since 2019. The recent clinical development is also discussed here. In recent years, the discovery of small-molecule PRMT inhibitors, especially PRMT5 inhibitors has become a rapidly expanding research area for cancer therapy. Although a number of potent PRMT inhibitors with different chemical scaffolds have been developed and nine of them have entered into clinical trials, their scaffolds are relatively less diverse. Sub-type selectivity should be considered in drug discovery as nonselective inhibition of PRMTs may cause undesirable pharmacological effects. Hence, the development of new effective inhibitors with isoform-specific and tumor-biased distributions remains an important area for further studies.


Neoplasms , Protein-Arginine N-Methyltransferases , Humans , Protein-Arginine N-Methyltransferases/metabolism , Patents as Topic , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Arginine/metabolism
19.
J Hematol Oncol ; 14(1): 138, 2021 09 06.
Article En | MEDLINE | ID: mdl-34488823

Targeting pathogenic proteins with small-molecule inhibitors (SMIs) has become a widely used strategy for treating malignant tumors. However, most intracellular proteins have been proven to be undruggable due to a lack of active sites, leading to a significant challenge in the design and development of SMIs. In recent years, the proteolysis-targeting chimeric technology and related emerging degradation technologies have provided additional approaches for targeting these undruggable proteins. These degradation technologies show a tendency of superiority over SMIs, including the rapid and continuous target consumption as well as the stronger pharmacological effects, being a hot topic in current research. This review mainly focuses on summarizing the development of protein degradation technologies in recent years. Their advantages, potential applications, and limitations are also discussed. We hope this review would shed light on the design, discovery, and clinical application of drugs associated with these degradation technologies.


Drug Discovery/methods , Proteolysis/drug effects , Small Molecule Libraries/pharmacology , Animals , Humans , Molecular Targeted Therapy , Proteins/antagonists & inhibitors , Proteins/metabolism , Small Molecule Libraries/chemistry
20.
J Med Chem ; 64(13): 8884-8915, 2021 07 08.
Article En | MEDLINE | ID: mdl-34170703

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates various biological processes, including proliferation, metastasis, angiogenesis, immune response, and chemoresistance. In normal cells, STAT3 is tightly regulated to maintain a transiently active state, while persistent STAT3 activation occurs frequently in cancers, associating with a poor prognosis and tumor progression. Targeting the STAT3 protein is a potentially promising therapeutic strategy for tumors. Although none of the STAT3 inhibitors has been marketed yet, a few of them have succeeded in entering clinical trials. This Review aims to systematically summarize the progress of the last 5 years in the discovery of directive STAT3 small-molecule inhibitors and degraders, focusing primarily on their structural features, design strategies, and bioactivities. We hope this Review will shed light on future drug design and inhibitor optimization to accelerate the discovery process of STAT3 inhibitors or degraders.


Antineoplastic Agents/pharmacology , Drug Development , Neoplasms/drug therapy , STAT3 Transcription Factor/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Humans , Molecular Structure , Neoplasms/metabolism , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
...